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Agenda

* Motivation (10 minutes)
* Trends, real-world scenarios

* DL frameworks on Apache Spark (20 minutes)
» BigDL, TensorFlowOnSpark, DL Pipelines, SparkNet

 Analytics Zoo for Spark and BigDL (15 minutes)

* High level pipeline APIs, feature engineering, built-in models, reference use cases

* Analytics Zoo Examples (15 minutes)
* Dogs vs. cats, object detection, TFNet

* Break (30 minutes)
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Agenda

* Distributed training in BigDL (30 minutes)

« Data parallel training, parameter synchronization, scaling & convergence, task
scheduling, etc.

« Advanced applications (15 minutes)
» Variational autoencoder, movie recommendations

* Real-world applications (30 minutes)

* Object detection and image feature extraction at JD.com

* Image similarity based house recommendation for MLSlistings
» Transfer learning based image classifications for World Bank

* Fraud detection for payment transactions for UnionPay

* Conclusion and Q&A (15 minutes)
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Motivations

Technology and Industry Trends
Real World Scenarios
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Trend #1: Data Scale Driving
Deep Learning Process

Medium NN
“*Machine Learning Yearning”,
Small NN Andrew Ng, 2016
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Trend #2: Hadoop Becoming the
Center of Data Gravity

Why an Enterprise Data Hub ?

Single place for all enterprise data... (unedited hi-resolution history of everything)
Reduces Application Integration Costs
Connect once to Hub ( N vs N’ connections)
Lowest unit cost data processing & storage platform
Open source S/W on commodity H/W (reliability in S/W not H/W)
Can mix H/W vendors means every expansion is competitively tendered
Fast Standardised Provision
No custom design task, re-use Active Directory account/password processes
Reduces Shadow IT

Secure (audited, E2E visibility/auditing, encryption)

Eliminate need for one off extracts

#StrataHadoop Stratavuliadoop

Phillip Radley, BT Group
Strata + Hadoop World 2016 San Jose

Everyone is building Data Lakes

Universal data acquisition makes all big data analytics and
reporting easier

Hadoop provides a scalable storage with HDFS

How will we scale consumption and curation of all this data?

we
BUILD

Matthew Glickman, Goldman Sachs
Spark Summit East 2015

CVPR 2018



Trend #3: Real-World ML/DL Systems Are
Complex Big Data Analytics Pipelines

Machine
Data -
Verification Resource Monitoring
i Management
Configuration Data Collection Senving

Infrastructure
Code Analysis Tools

Feature Process
Extraction Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

“*Hidden Technical Debt in Machine Learning Systems”,
Sculley et al., Google, NIPS 2015 Paper
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Trend #4: Unified Big Data Platform Driving
Analytics & Data Science

Better Phone Better GPS Better Games

An Analogy T N A

lon Stoica, UC Berkeley,
Spark Summit 2013 Keynote

First cellular Specialized Unified device
phones devices (smartphone)
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Unified Big Data Analytics Platform

Apache Hadoop & Spark Platform
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Chasm b/w Deep Learning and Big Data

Communities
The
] Chasm
Deep learning experts Average users (big data users, data scientists, analysts, etc.)
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Large-Scale Image Recognition at JD.com

Preprocess
P Boxes &

scores

SSDModel

Preprocess

— —

ToBatch

DeepBit Model

CVPR 2018



Bridging the Chasm

Make deep learning more accessible to big data and data science communities

* Continue the use of familiar SW tools and HW infrastructure to build deep learning
applications

« Analyze “big data” using deep learning on the same Hadoop/Spark cluster where the
data are stored

« Add deep learning functionalities to large-scale big data programs and/or workflow

» Leverage existing Hadoop/Spark clusters to run deep learning applications
* Shared, monitored and managed with other workloads (e.g., ETL, data warehouse, feature
engineering, traditional ML, graph analytics, etc.) in a dynamic and elastic fashion
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DL Frameworks on Apache Spark
BigDL, DL Pipelines for Spark, TensorflowOnSpark, SparkNet, etc.
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Apache Spark

Low Latency, Distributed Data Processing Framework

A Spark cluster consists of a single Worker i
driver node and multiple worker nodes Spark Task | !

| |

. y ' I Spark Task |

* A Spark job contains many Spark tasks, i Slen p i
each working on a data partition | Spark Task | |

| SRALK M A SR

* Driver is responsible for scheduling and i op Worker i
dispatching the tasks to workers, which P w ] amgm.a Spark Task | !
runs the actual Spark tasks R T i

|

Spark Task i

https://spark.apache.org
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Apache Spark

Spark Program

* Spark runs as a library in your program
(1 instance per app)

* Runs tasks locally or on cluster
» K8s, YARN, Mesos or standalone mode

» Accesses storage systems via Hadoop

InputFormat API
* Can use HBase, HDFS, S3, ...

Source: “Parallel programming with Spark”, Matei
Zaharia, AMPCamp 3
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Apache Spark

Distributed Task Execution

* General task graphs

» Automatically pipelines
functions

* Data locality aware

* Partitioning aware
to avoid shuffles

_— e - e S S S e S e S e e E—,

Source: “Parallel programming with Spark”, Matei
Zaharia, AMPCamp 3

. = RDD MM = Cached Partition
CVPR 2018



BigDL
Bringing Deep Learning To Big Data Platform

ST

Distributed deep learning framework for Apache Spark*

Make deep learning more accessible to big data users

and data scientists
* Write deep learning applications as standard Spark programs
* Run on existing Spark/Hadoop clusters (no changes needed)

Feature parity with popular deep learning frameworks
+ E.g., Caffe, Torch, Tensorflow, etc.

High performance (on CPU)
* Powered by Intel MKL and multi-threaded programming

Efficient scale-out
* Leveraging Spark for distributed training & inference

Spark Core

https://github.com/intel-analytics/BigDL

https://bigdl-project.github.io/
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BigDL Run as Standard Spark Programs

Standard Spark jobs

* No changes to the Spark or Hadoop clusters needed

Iterative

* Each iteration of the training runs as a Spark job

Data parallel

+ Each Spark task runs the same model on a subset of the data (batch)

33 Worker § 3 Worker

Spark Standard

%3 Worker 33 VVorker§
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Distributed Training in BigDL

Parameter Server Architecture
directly inside Spark (using Block Manager)

9 5 9 5 9 5

Gradient @ Weight  Gradient g Weight Gradient @ Weight
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Training Set

Peer-2-Peer All-Reduce synchronization
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TensoflowOnSpark

Standalone TF jobs on Spark cluster
« Use Spark as the orchestration layer to allocate resources

* Launch distributed TensorFlow job on the allocated resources
» Coarse-grained integration of two independent frameworks

* Memory overheads, no gang scheduling, limited interactions with data pipelines, etc.

: - i

feed_dict: TF worker func runs as independent process
in background, reading data from Python queue

queue_runner: direct HDFS access from TF work func

https://github.com/yahoo/TensorFlowOnSpark CVPR 2018



https://github.com/yahoo/TensorFlowOnSpark

DL Pipelines for Spark

Spark ML Pipelines
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Load existing TF or Keras models in Spark ML pipelines
* Load into transformer: inference only

* Load into estimator: single node training/tuning only

https://github.com/databricks/spark-deep-learning CVPR 2018



https://github.com/databricks/spark-deep-learning

SparkNet

Worker 1 Worker 4

Worker 2 Worker 3

GPU GPU Source: “SparkNet: Training

Deep Networks in Spark”,
Philipp Moritz, et al., ICLR 2016

Distributed DL training by running Caffe in each worker
* Asynchronous parameter synchronization through master (driver) mode
* Very inefficient (~20 seconds with just 5 workers)
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Analytics Zoo

Analytics + Al Platform for Spark and BigDL

https://qithub.com/intel-analytics/analytics-zoo
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Analytics Zoo

Build and Productionize Deep Learning Apps for Big Data at Scale

Reference Use Cases

Anomaly detection
Sentiment analysis

* Fraud detection

Chatbot, sequence prediction, etc.

Built-In Deep Learning Models -

Feature Engineering

High-Level Pipeline APlIs .

Image classification

Object detection

Text classification
Recommendations
Sequence-to-sequence, GAN, etc.

Feature transformations for

Image, text, 3D imaging, time series, speech, etc.

Native deep learning support in Spark DataFrames and ML Pipelines
Autograd, Keras and transfer learning APIs for model definition
Model serving APl for model serving/inference pipelines

Backbends Spark, BigDL, TensorFlow, etc.

https://github.com/intel-analytics/analytics-zoo/ https://analytics-zoo.github.io/ CVPR 2018
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Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

* Flexible model definition using autograd, Keras-style & transfer learning APIs

* Data preprocessing using built-in feature engineering operations

» Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications for big data at scale

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference using TFNet

CVPR 2018



Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

* Flexible model definition using autograd, Keras-style & transfer learning APIs

* Data preprocessing using built-in feature engineering operations

» Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications at scale for big data

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference using TFNet
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nnframes
Native DL support in Spark DataFrames and ML Pipelines

1. Initialize NNContext and load images into DataFrames using NNImageReader

from zoo.common.nncontext import *
from zoo.pipeline.nnframes import *

sc = 1init nncontext ()
imageDF = NNImageReader.readImages (image path, sc)

2. Process loaded data using DataFrame transformations

getName = udf (lambda row: ...)
df = imageDF.withColumn ("name", getName (col ("image™")))

3. Processing image using built-in feature engineering operations

from zoo.feature.image import *
transformer = ChainedPreprocessing(

[RowToImageFeature (), ImageChannelNormalize (123.0, 117.0, 104.0),
ImageMatToTensor (), ImageFeatureToTensor()])

CVPR 2018



nnframes
Native DL support in Spark DataFrames and ML Pipelines

4. Define model using Keras-style API

from zoo.pipeline.api.keras.layers import *
from zoo.pipeline.api.keras.models import *
model = Sequential ()

.add (Convolution2D (32, 3, 3, activation='relu', input shape=(1, 28, 28))) \
.add (MaxPooling2D (pool size=(2, 2))) \
.add(Flatten()) .add (Dense (10, activation='softmax')))

5. Train model using Spark ML Pipelines

Estimater = NNEstimater (model, CrossEntropyCriterion(), transformer) \
.setLearningRate (0.003) .setBatchSize (40) .setMaxEpoch (1) \

.setFeaturesCol ("image") .setCachingSample (False)
nnModel = estimater.fit (df)
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Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

* Flexible model definition using autograd, Keras-style & transfer learning APIs

* Data preprocessing using built-in feature engineering operations

» Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications at scale for big data

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference using TFNet
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Autograd, Keras &Transfer Learning APIs

1. Use transfer learning APlIs to
* Load an existing Caffe model
 Remove last few layers
* Freeze first few layers
 Append a few layers

from zoo.pipeline.api.net import *

full model = Net.load caffe(def path, model path)

# Remove layers after pool5

model = full model.new graph (outputs=["pool5"]) .to keras())
# freeze layers from input to res4f inclusive

model.freeze up to(["resd4f"])

# append a few layers

image = Input (name="input", shape=(3, 224, 224))
resnet = model.to keras() (image)

resnetb50 = Flatten () (resnet)

Build Siamese Network Using Transfer Learning
CVPR 2018



Autograd, Keras &Transfer Learning APIs

2. Use autograd and Keras-style APls to build the Siamese Network

import zoo.pipeline.api.autograd as A
from zoo.pipeline.api.keras.layers import *
from zoo.pipeline.api.keras.models import *

input = Input (shape=[2, 3, 226, 226])
features = TimeDistributed(layer=resnet50) (input)

fl = features.index select(l, 0) #imagel
f2 = features.index select(l, 1) #image2
diff = A.abs(fl - £2)

fc = Dense(l) (diff)

output = Activation ("sigmoid") (fc)

model = Model (input, output)

Build Siamese Network Using Transfer Learning
CVPR 2018



Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

 Flexible model definition using autograd, Keras-style & transfer learning APls

» Data preprocessing using built-in feature engineering operations

» Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications at scale for big data

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference using TFNet
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Feature Engineering

1. Read images into local or distributed ImagesSet

from zoo.common.nncontext import *
from zoo.feature.image import *
spark = init nncontext ()

local image set = ImageSet.read(image path)
distributed image set = ImageSet.read(image path, spark, 2)

2. Image augmentations using built-in ImageProcessing operations

transformer = ChainedPreprocessing([ImageBytesToMat (),
ImageColorJditter (),
ImageExpand (max expand ratio=2.0),
ImageResize (300, 300, -1),

ImageHFlip () 1)
new local image set = transformer (local image set)
new distributed image set = transformer (distributed image set)

Image Augmentations Using Built-in Image Transformations (w/ OpenCV on Spark)
CVPR 2018



Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

* Flexible model definition using autograd, Keras-style & transfer learning APIs

* Data preprocessing using built-in feature engineering operations

* Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications at scale for big data

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference using TFNet

CVPR 2018



Built-in Deep Learning Models

* Object detection API
* High-level API and pretrained models (e.g., SSD, Faster-RCNN, etc.) for object detection

* Image classification API

* High-level APl and pretrained models (e.g., VGG, Inception, ResNet, MobileNet, etc.) for image
classification

* Text classification API
» High-level APl and pre-defined models (using CNN, LSTM, etc.) for text classification

* Recommendation API

* High-level APl and pre-defined models (e.g., Neural Collaborative Filtering, Wide and Deep Learning,
etc.) for recommendation

CVPR 2018



Object Detection API

1. Load pretrained model in Detection Model Zoo

from zoo.common.nncontext import *
from zoo.models.image.objectdetection import *

spark = 1init nncontext ()
model = ObjectDetector.load model (model path)

2. Off-the-shell inference using the loaded model

image set = ImageSet.read(img path, spark)
output = model.predict image set (image set)

3. Visualize the results using utility methods

config = model.get config()
visualizer = Visualizer (config.label map (), encoding="jpg")

visualized = visualizer (output).get image (to chw=False) .collect ()

Off-the-shell Inference Using Analytics Zoo Object Detection API

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/examples/objectdetection
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Reference Use Cases

 Anomaly Detection
* Using LSTM network to detect anomalies in time series data

* Fraud Detection
+ Using feed-forward neural network to detect frauds in credit card transaction data

* Recommendation

» Use Analytics Zoo Recommendation API (i.e., Neural Collaborative Filtering, Wide and Deep
Learning) for rcecommendations on data with explicit feedback.

» Sentiment Analysis
« Sentiment analysis using neural network models (e.g. CNN, LSTM, GRU, Bi-LSTM)

* Variational Autoencoder (VAE)
+ Use VAE to generate faces and digital numbers

https://github.com/intel-analytics/analytics-zoo/tree/master/apps
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Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

 Flexible model definition using autograd, Keras-style & transfer learning APls

* Data preprocessing using built-in feature engineering operations

» Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications at scale for big data

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference using TFNet

CVPR 2018



POJO Model Serving API

import com.intel.analytics.zoo.pipeline.inference.AbstractInferenceModel;

public class TextClassification extends AbstractInferenceModel {
public RankerInferenceModel (int concurrentNum) {
super (concurrentNum) ;

public class ServingExample {
public static void main(String[] args) throws IOException {
TextClassification model = new TextClassification{();
model. load (modelPath, weightPath);

texts = ..
List<JTensor> inputs = preprocess (texts);
for (JTensor input : inputs) {
List<Float> result = model.predict (input.getData (), input.getShape()):

CVPR 2018



Model Serving & Inference

_ Analytlcs
Zoo
Model

\ Bolt
Spout

—>
s
Analytlcs
Zoo
Spout / Model
Bolt
Bolt

Seamless integration in Web Services, Storm, Flink, Kafka, etc. (using POJO local Java APIs)
CVPR 2018



Model Serving in Spark DataFrames

Kafka File

«

Data Frame
(Batch/Stream)

df.select($'image’)
withColumn( “image_type”,
ImgClassifylnAnalyticsZoo(“image”)) »

filter($'image_type’ == ‘dog)) | % w

ImageNet dataset (http://www.image-net.org)

¥y
s

A 4

Analytics Zoo
UDF

¥

Filtered Data
Frame
(Batch/Stream)

Seamless support of DL functionalities in Spark SQL queries, Dataframe operation and stream processing

CVPR 2018
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Analytics Zoo

Build end-to-end deep learning applications for big data

« E2E analytics + Al pipelines (natively in Spark DataFrames and ML Pipelines)
using nnframes

 Flexible model definition using autograd, Keras-style & transfer learning APls

* Data preprocessing using built-in feature engineering operations

» Out-of-the-box solutions for a variety of problem types using built-in deep
learning models and reference use cases

Productionize deep learning applications at scale for big data

« Serving models in web services and big data frameworks (e.g., Storm or Kafka)
using POJO model serving APIs

 Large-scale distributed TensorFlow model inference & fine tuning using TFNet
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Distributed TensorFlow Model Inference

1. Export TensorFlow models (in your TensorFlow program)

import tensorflow as tf

batch size tensor = tf.placeholder with default (128, shape=[])
X batch, y batch = tf.train.shuffle batch (..., batch size=batch size tensor,
cnn = cnn _model fn(x batch, y batch)

sess = tf.Session|()

init op = tf.group(tf.global variables initializer (), tf.local variables initializer())
sess.run(init op)

for step in range (600) :

, loss = sess.run([cnn.train op, cnn.loss],

from zoo.utils.tf import *
export tf(sess, folder path, [x batch], [cnn.prediction])

CVPR 2018



Distributed TensorFlow Model Inference

2. Load exported TensorFlow model into Analytics Zoo

from zoo.pipeline.api.net import *
model = TFNet.from export folder (folder path)

# Alternatively, you may directly load a frozen TensorFlow model as follows
# model = TFNet (model path, [“image tensor:0”], [“output tensor:0”])

3. Add afew layers and run distributed model inference

import zoo.pipeline.api.autograd as A
from zoo.pipeline.api.keras.layers import *
from zoo.pipeline.api.keras.models import *

input = Input (shape=[2, 3, 226, 226])

features = TimeDistributed (layer=model) (input)

f1 = features.index select(l, 0)

f2 = features.index select(l, 1)

diff = A.abs(fl - £2)

result = Model (input, diff)

result.predict image set(...) CVPR 2018




Analytics Zoo Examples

Dogs vs. cats, object detections, TFNet

CVPR 2018



Dogs vs. Cats

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/dogs-vs-cats/transfer-learning.ipynb
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Object Detection API

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/object-detection/object-detection.ipynb
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Image Classification Using TFNet

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/tfnet/image classification inference.ipynb
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Break
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Distributed Training In BigDL

Data parallel training
Parameter synchronization
Scaling and Convergence
Task scheduling

“BigDL: A Distributed Deep Learning Framework for Big Data”, https://arxiv.org/abs/1804.05839
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Apache Spark

Spark Task
Spark Task
Spark Task

— — — — — — — — — — —

Driver

Spark

o Worker '

L AP Spark Task
Spark Task
Spark Task

Single master (driver), multiple workers

CVPR 2018



Spark compute model

» Data parallel

* Functional, coarse-grained operators
* Immutable RDDs

* Applying the same operation (e.g., map,
filter, etc.) to all data items

- o o o . - . o e e o .

. = RDD MM = Cached Partition

Spark”, Matei Zaharia, AMPCamp 3 CVPR 2018

Source: “Parallel programming with



Distributed Training in BigDL

Data Parallel, Synchronous Mini-Batch SGD

Prepare training data as an RDD of Samples
Construct an RDD of models (each being a replica of the original model)

for (1 <- 1 to N) {
//”model forward-backward” job
for each task in the Spark job:
read the latest weights
get a random batch of data from local Sample partition
compute errors (forward on local model replica)
compute gradients (backward on local model replica)

//”parameter synchronization” job
aggregate (sum) all the gradients
update the weights per specified optimization method

CVPR 2018



Data Parallel Training

Worker 1 Worker 2 Worker n
Partition 1 Partition 2 sample Partition n
)< RDD \
Task 1/ Task 2 \
/ \ Task n: zip Sample and
\ model RDDs, and compute
\ / gradient on co-located
N\ Sample and model partitions
Partition 1 Partition 2 3< Model | partitionn f
RDD

“Model Forward-Backward” Job
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Parameter Synchronization

local gradient local gradient local gradient

p

gradie

weig

b
nt 11 1 gradient 2 | 2 gradie
update update
ht 1 :|' weight 2 ; weig
Task 1 Task 2

“Parameter Synchronization” Job
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Parameter Synchronization

For each task n in the ”“parameter synchronization” job {
shuffle the n®? partition of all gradients to this task
aggregate (sum) the gradients

updates the n®? partition of the weights
broadcast the nt? partition of the updated weights

“Parameter Synchronization” Job
(managing nt" partition of the parameters - similar to a parameter server)

“Parameter Server” style architecture (directly on top of primitives in Spark)
» Gradient aggregation: shuffle

* Weight sync: task-side broadcast

* In-memory persistence
CVPR 2018



Training Scalability

—BigDL 0.3.0

Throughput of InageNet Inception v1 training (w/ BigDL 0.3.0 and dual-socket Intel Broadwell 2.1 GHz);
the throughput scales almost linear up to 128 nodes (and continue to scale reasonably up to 256 nodes).

Source: Scalable Deep Learning with BigDL on the Urika-XC Software Suite
(https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/)
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Increased Mini-Batch Size

* Distributed synchronous mini-batch SGD

* Increased mini-batch size
total batch_size = batch_size_per_worker * num_of _workers

» Can lead to loss in test accuracy

 State-of-art method for scaling mini-batch size*
* Linear scaling rule
 Warm-up strategy
* Layer-wise adaptive rate scaling
* Adding batch normalization

*Source: “Accurate, Large Minibatch SGD: Training ImageNetin 1 Hour”, Priya Goyal, et at. https://arxiv.org/abs/1706.02677
*Source: “ImageNet Training in Minutes”, Yang You, et at. https://arxiv.org/abs/1709.05011
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Training Convergence: Inception v1

Top1 accuracy Top5 Accuracy

——batch-1404 —batch-5632 batch-8448 — batch-1404 — batch-5632 batch-8448

Strategies
 Warm-up

* Linear scaling

* Gradient clipping

« TODO: adding batch normalization Source: Very large-scale distributed deep learning with BigDL,
: Jason Dai and Ding Ding. O'Reilly Al Conference 2017

CVPR 2018




Training Convergence: SSD

Mean Average Precision

Strategies
 Warm-up
* Linear scaling

* Gradient clippin
batch-112 batch 224 PRIng

Source: Very large-scale distributed deep learning with BigDL,
Jason Dai and Ding Ding. O'Reilly Al Conference 2017
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Difference vs. Classical PS Architecture

Classical PS architecture
* Multiple long-running, potentially
stateful tasks

* Interact with each other (in a blocking
fashion for synchronization)

* Require fine-grained data access and in-
place data mutation

* Not directly supported by existing big
data systems

BigDL implementations

* Run a series of short-lived Spark jobs
(e.g., two jobs per mini-batch)

« Each task in the job is stateless and
non-blocking

« Automatically adapt to the dynamic
resource changes (e.g., preemption,
failures, resource sharing, etc.)

 Built on top of existing primitives in
Spark (e.g., shuffle, broadcast, and in-
memory data persistence)

CVPR 2018



Task Scheduling Overheads

BigDL implementations

* Run a single, multi-
threaded task on each
worker

» Achieve high scalability on
large clusters (e.g., up to
256 servers

Spark overheads (task scheduling & task dispatch ) as a
fraction of average compute time for Inception v1 training

Source: Accelerating Deep Learning Training with BigDL and Drizzle on Apache Spark, Shivaram Venkataraman, Ding Ding, and Sergey Ermolin.
(https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/) CVPR 2018



https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/

Reducing Scheduling Overheads Using
Drizzle

Scaling to even larger (>500) workers
* Iterative model training
« Same operations run repeatedly —BigDL w/o Drizzle
* Drizzle BigDL w/ Drizzle
+ A low latency execution engine for Spark

* Group scheduling for multiple iterations
of computations at once

Source: Accelerating Deep Learning Training with BigDL and Drizzle on Apache Spark, Shivaram Venkataraman, Ding Ding, and Sergey Ermolin.
(https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/) CVPR 2018
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Advanced Analytics Zoo Applications

Variational autoencoder, movie recommendations
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Variational AutoEncoder

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/variational-
autoencoder/using variational autoencoder to generate digital hnhumbers.ipynb

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/variational-
autoencoder/using variational autoencoder to generate faces.ipynb
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https://github.com/intel-analytics/analytics-zoo/blob/master/apps/variational-autoencoder/using_variational_autoencoder_to_generate_faces.ipynb

Movie Recommendations

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/recommendation/ncf-explicit-
feedback.ipynb
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Real-World Applications
Object detection and image feature extraction at JD.com
Image similarity based house recommendation for MLSlisting
Transfer learning based image classifications for World Bank
Fraud detection for payment transactions for UnionPay
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Object Detection and Image Feature Extraction
at JD.com

Preprocess
P Boxes &

scores

DeepBit Model
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Applications

Large-scale image feature extraction
« Object detect (remove background, optional)
* Feature extraction

Application
* Similar image search

* Image Deduplication
* Competitive price monitoring
* |P (image copyright) protection system

Source: “Bringing deep learning into big data analytics using BigDL", Xianyan Jia and Zhenhua Wang, Strata Data Conference Singapore 2017
CVPR 2018



Similar Image Search

wil FERH T T%2:50
BIRERK
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Search Result

Search Result

201758 B
BIREPURLKE. ..

¥99

Source: “Bringing deep learning into big data analytics using BigDL", Xianyan Jia and Zhenhua Wang, Strata Data Conference Singapore 2017
CVPR 2018



Challenges of Productionizing Large-Scale
Deep Learning Solutions

Productionizing large-scale seep learning solutions is challenging

* Very complex and error-prone in managing large-scale distributed systems
» E.g., resource management and allocation, data partitioning, task balance, fault tolerance,
model deployment, etc.

* Low end-to-end performance in GPU solutions
» E.g., reading images out from HBase takes about half of the total time

* Very inefficient to develop the end-to-end processing pipeline
* E.g., image pre-processing on HBase can be very complex

CVPR 2018



Production Deployment with Analytics Zoo for
Spark and BigDL

Preprocess
P Boxes &

. T r—" scores

Image feature extraction pipeline

Normalize o = =] :
' : 5 throughput (img/s)
SSD Model .

Xeon (1200 logic cores)

DeepBit Model

» Reuse existing Hadoop/Spark clusters for deep learning with no changes (image search, IP protection, etc.)

« Efficiently scale out on Spark with superior performance (3.83x speed-up vs. GPU severs) as benchmarked by JD

http://mp.weixin.qq.com/s/xUCkzbHK4K06-v5qUsaNQQ
https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom cypRr 2018
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https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom

Image Similarity Based House
Recommendation for MLSlistings

MLSlistings built image-similarity based house recommendations
Azure Backend using BigDL on Microsoft Azure

[ API Server ]

.

Web Application

Similar Houses

————
Apache HBase

Query
. or other Cache S

T Recommendation

Image tags and Rank results web Ul for
embedding ata customer

San Jose, CA
_!A‘ $1,270,000

Upload new
images
by agents

New images

ﬁ

Azure
Storage

New images

Property Details Neighborhood Map | View Virtual Tour | BuildFax

Pride of Ownership comes to the forefront in this single story "Blossom Valley" Gem. With over 1500 square feet of living space, this

https://software.intel.com/en-us/articles/using-bigdl-to-build-image-similarity-based-house-recommendations
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Image Similarity Based House
Recommendation for MLSlistings

RDD of house
photos

‘[

Image pre-
processing

RDD of house
photos

Tags (is_exterior, style,
floors) of images

Three pre-trained Inception v1 models (fine-
tuned as classifiers)

Image pre-
processing

Image features

Store image tags and
feature in table storage

Pre-trained VGG16 model (to extract

features)

CVPR 2018



Image Similarity Based House
Recommendation for MLSlistings

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/image-
similarity/Image%?20similarity.ipynb
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Transfer Learning Based Image Classifications
for World Bank

Classifying Real Food Images is not a Cat vs. Dog Problem

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018
i CVPR 2018



Project Layout

Phase 1:
* Image preprocessing (eliminate poor quality images and invalid images)
« Classify images (by food type) to validate existing labels

Phase 2:

* ldentify texts in the image and make bounding box around them

« Text recognition (words/sentences in the image text)

« Determine whether text contains Pll (personal identifiable information)
» Blur areas with PIl text

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018
R CVPR 2018



Code - Phase 1

Prediction and Evaluation

Fine-tuning Training

prétra1ned model_path = path. ]o1n(MODEL ROOT, “b1gdl inception_vl_imagenet & 4 @.model")

n_classes = len(label_dict)# 0 cL

full_model = Net. 1°ad b1gdlfdbf’ predict_model = trained_model.setBatchSize(batch_size)

L by remove layers after 1 . _ . .

model = full. model new. graph(["pools/drop_7x7 Sl“]‘ predictionDF = predict_model.transform(test_image)
predictionDF.cache()

inputNode = Input(name="input", shape=(3, 224, 224))

inception = model.to_keras() (inputNode)

flatten = Flatten() (inception)

logits = Dense(n_classes)(flatten) (NN

Measure Test Accugacy w/Test Set
1rModel = Model(inputNode, logits) e E§ .

evaluator = MulticlassClassificationEvaluator(labelCol="Tabel",
predictionCol="prediction",
hetricName=“accuracy“}

creating: create KerasInput
creating: create KerasFlatten
creating: create KerasDense

creating: createZooKerasModel accuracy = evaluator.evaluate(predictionDF)
# cted error uld be less than 16
print("Accuracy = %g " % accuracy)
predictionDF.unpersist()

i ol
classifier = NNClassifier(lrModel, CrossEntropyCriterion(), train_transformer)
.setlearningRate(learning_rate)\
.setBatchSize(batch_size)
.setMaxEpoch(no_epochs)
.setFeaturesCol("image")\
.setValidation(EveryEpoch(), val_image, [ToplAccuracy()], batch_size)
start = time.time()
trained_model = classifier.fit(train_image)
end = time.time()
print("optimization Done.")
print("Training time is: %s seconds" % str{end-start))
). stritime ("%YEamesd —%HGM:S"

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018
i CVPR 2018




Result - Phase 1

* Fine tune with Inception v1 on a full dataset
* Dataset: 994325 images, 69 categories

* This model training was performed using multinode cluster on AWS R4.8xlarge instance with 20 nodes

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018
i CVPR 2018



Next Steps — Phase 2

* Image Quality Preprocessing
* Filter with print text only

» Rescaling, Binarisation, Noise Removal, Rotation / Deskewing (OpenCV,
Python, etc.)

» Detect text and bounding box circle text

* Recognize text

« Determine whether text contains Pll (personal identifiable information)
* Recognize PIl with leading words

« Blur areas with PI| text
* Image tools

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018
% CVPR 2018



Fraud Detection for Payment Transactions
for UnionPay

Test
Test Data

Training Data Train one model

sampled . . model
partition / allfiatures selected features \“ candidate v
d ‘

— — —» Feature —_
. Feature Selection* _|}/|O.d(i?l
raining
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partition
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Predictions
"

Hive Table Spark DataFrame Neural Network Model Using BigDL

s?__biz=MzI3NDAwWNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f
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Fraud Detection for Payment Transactions
for UnionPay

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/fraud-detection/fraud-detection.ipynb
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Summary

Make deep learning more accessible to big data and data science communities

» Analyze “big data” using deep learning on the same Hadoop/Spark cluster where the
data are stored
» Add deep learning functionalities to large-scale big data programs and/or workflow

» Leverage existing Hadoop/Spark clusters to run deep learning applications
* Shared, managed and monitored with other workloads (ETL, data warehouse, traditional ML, etc.)

Analytics Zoo: https://github.com/intel-analytics/analytics-zoo

* End-to-end Analytics + Al platform for Apache Spark and BigDL
* Build and productionize deep learning application for Big Data at Scale
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lEGAI. DISCLAIMERS

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

* No computer system can be absolutely secure.

» Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon, Xeon phi, Lake Crest, etc. are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation
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