
AAAI 2019

Building Deep Learning Applications
for Big Data
An Introduction to Analytics Zoo: Distributed TensorFlow, Keras and BigDL on Apache Spark

Jason Dai

https://github.com/intel-analytics/analytics-zoo/

AAAI 2019

Agenda

• Motivation (15 minutes)
• Trends, real-world scenarios

• DL frameworks on Apache Spark (30 minutes)
• BigDL, TensorFlowOnSpark, DL Pipelines, Project Hydrogen, SparkNet

• Analytics Zoo (30 minutes)
• Distributed TensorFlow, Keras and BigDL on Apache Spark

• Analytics Zoo Examples (30 minutes)
• Dogs vs. cats, object detection, OpenVINO model inference, distributed TensorFlow

• Break (30 minutes)

AAAI 2019

Agenda

• Distributed training in BigDL (30 minutes)
• Data parallel training, parameter synchronization, scaling & convergence, etc.

• Advanced applications (20 minutes)
• Text classification, movie recommendation

• Real-world applications (45 minutes)
• Object detection and image feature extraction at JD.com
• Produce defect detection using distributed TF on Spark in Midea
• NLP based customer service chatbot for Microsoft Azure
• Image similarity based house recommendation for MLSlisting
• Transfer learning based image classifications for World Bank
• LSTM-Based time series anomaly detection for Baosight
• Fraud detection for payment transactions for UnionPay

• Conclusion and Q&A (10 minutes)

AAAI 2019

Motivations
Technology and Industry Trends

Real World Scenarios

AAAI 2019

Trend #1: Data Scale Driving
Deep Learning Process

“Machine Learning Yearning”,
Andrew Ng, 2016

AAAI 2019

Trend #2: Hadoop Becoming the
Center of Data Gravity

Phillip Radley, BT Group
Strata + Hadoop World 2016 San Jose

Matthew Glickman, Goldman Sachs
Spark Summit East 2015

AAAI 2019

Trend #3: Real-World ML/DL Systems Are
Complex Big Data Analytics Pipelines

“Hidden Technical Debt in Machine Learning Systems”,
Sculley et al., Google, NIPS 2015 Paper

AAAI 2019

Trend #4: Unified Big Data Platform Driving
Analytics & Data Science

Ion Stoica, UC Berkeley,
Spark Summit 2013 Keynote

AAAI 2019

Unified Big Data Analytics Platform

Data

Input
Flume Kafka Storage HBaseHDFS

Resource Mgmt

& Co-ordination
ZooKeeperYARN

Data

Processing

& Analysis

MR

Storm

Apache Hadoop & Spark Platform

Parquet Avro

Spark Core

SQL Streaming MLlib GraphX

DataFrame

ML Pipelines

SparkR

Flink

Giraph

Batch Streaming Interactive

Machine

Leaning
Graph

Analytics
SQL

R PythonJava

Notebook Spreadsheet

AAAI 2019

Chasm b/w Deep Learning and Big Data
Communities

Average users (big data users, data scientists, analysts, etc.)Deep learning experts

The
Chasm

AAAI 2019

Large-Scale Image Recognition at JD.com

AAAI 2019

Bridging the Chasm

Make deep learning more accessible to big data and data science communities

• Continue the use of familiar SW tools and HW infrastructure to build deep learning
applications

• Analyze “big data” using deep learning on the same Hadoop/Spark cluster where the
data are stored

• Add deep learning functionalities to large-scale big data programs and/or workflow

• Leverage existing Hadoop/Spark clusters to run deep learning applications
• Shared, monitored and managed with other workloads (e.g., ETL, data warehouse, feature

engineering, traditional ML, graph analytics, etc.) in a dynamic and elastic fashion

AAAI 2019

DL Frameworks on Apache Spark
BigDL, DL Pipelines for Spark, TensorflowOnSpark,

Project Hydrogen of Spark, SparkNet, etc.

AAAI 2019

Apache Spark

Spark

Job

Driver

Spark Task

Worker

Spark Task

Spark Task

Spark Task

Worker

Spark Task

Spark Task

• A Spark cluster consists of a single
driver node and multiple worker nodes

• A Spark job contains many Spark tasks,
each working on a data partition

• Driver is responsible for scheduling and
dispatching the tasks to workers, which
runs the actual Spark tasks

Low Latency, Distributed Data Processing Framework

https://spark.apache.org

https://spark.apache.org/

AAAI 2019

Apache Spark
Spark Program

• Spark runs as a library in your program
(1 instance per app)

• Runs tasks locally or on cluster
• K8s, YARN, Mesos or standalone mode

• Accesses storage systems via Hadoop
InputFormat API
• Can use HBase, HDFS, S3, …

Your application

SparkContext

Local
threads

Cluster
manager

Worker

Spark
executor

Worker

Spark
executor

HDFS or other storageSource: “Parallel programming with Spark”, Matei
Zaharia, AMPCamp 3

AAAI 2019

Apache Spark

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Task

= Cached Partition= RDD

•General task graphs

•Automatically pipelines
functions

•Data locality aware

• Partitioning aware
to avoid shuffles

Source: “Parallel programming with Spark”, Matei
Zaharia, AMPCamp 3

Distributed Task Execution

AAAI 2019

BigDL
Bringing Deep Learning To Big Data Platform

https://github.com/intel-analytics/BigDL

Spark Core

SQL SparkR Streaming

MLlib GraphX

ML Pipeline

DataFrame

https://bigdl-project.github.io/

• Distributed deep learning framework for Apache Spark*

• Make deep learning more accessible to big data users
and data scientists
• Write deep learning applications as standard Spark programs
• Run on existing Spark/Hadoop clusters (no changes needed)

• Feature parity with popular deep learning frameworks
• E.g., Caffe, Torch, Tensorflow, etc.

• High performance (on CPU)
• Powered by Intel MKL and multi-threaded programming

• Efficient scale-out
• Leveraging Spark for distributed training & inference

https://github.com/intel-analytics/BigDL
https://bigdl-project.github.io/

AAAI 2019

BigDL Run as Standard Spark Programs

Spark

Program

DL App on Driver

Spark

Executor

(JVM)

Spark

Task
BigDL lib

Worker

Intel MKL

Standard
Spark jobs

Worker

Worker Worker

Worker

Spark

Executor

(JVM)

Spark

Task
BigDL lib

Worker

Intel MKL

BigDL

library
Spark

jobs

BigDL Program

Standard Spark jobs

• No changes to the Spark or Hadoop clusters needed

Iterative

• Each iteration of the training runs as a Spark job

Data parallel

• Each Spark task runs the same model on a subset of the data (batch)

AAAI 2019

Distributed Training in BigDL

…

Training Set

Parameter Server Architecture
directly inside Spark (using Block Manager)

Partition 1 Partition 2 Partition n

Worker

Gradient

1

2

Weight

3

4

5

Worker

Gradient

1

2

Weight

3

4

5

Worker

Gradient

1

2

Weight

3

4

5

…

… …
… … … …

Peer-2-Peer All-Reduce synchronization

AAAI 2019

DL Pipelines for Spark

Spark ML Pipelines

Dataframe Dataframe Dataframe

Transformer Transformer

Transformer

Estimator

Source: “Deep Dive into Deep Learning Pipelines”, Sue Ann Hong and
Tim Hunter, Spark Summit EU 2017

Load existing TF or Keras models in Spark ML pipelines

• Load into transformer: inference only

• Load into estimator: single node training/tuning only

https://github.com/databricks/spark-deep-learning

https://github.com/databricks/spark-deep-learning

AAAI 2019

TensoflowOnSpark

Spark
Task

Python
Queue

TF
Worker

Func

Worker

Spark
Task

Worker

TF
PS

Func

Spark
Task

Python
Queue

TF
Worker

Func

Worker
Spark
Task

TF
Worker

Func

Worker

Spark
Task

Worker

TF
PS

Func

Spark
Task

TF
Worker

Func

Worker

HDFS

feed_dict: TF worker func runs as independent process
in background, reading data from Python queue

queue_runner: direct HDFS access from TF work func

Standalone TF jobs on Spark cluster

• Use Spark as the orchestration layer to allocate resources

• Launch distributed TensorFlow job on the allocated resources

• Coarse-grained integration of two independent frameworks

• Memory overheads, no gang scheduling, limited interactions with data pipelines, etc.

https://github.com/yahoo/TensorFlowOnSpark

https://github.com/yahoo/TensorFlowOnSpark

AAAI 2019

Project Hydrogen

Spark and distributed TF have different
execution model

• Support “gang scheduling” through new
barrier execution mode

Overhead of data transferring between Spark
and TF

• Optimized data exchange leveraging Apache
Arrow

Source: “Project Hydrogen: State-of-the-Art Deep Learning on Apache
Spark”, Xiangrui Meng, Bay Area Apache Spark Meetup, July 2018

AAAI 2019

SparkNet

Source: “SparkNet: Training
Deep Networks in Spark”,
Philipp Moritz, et al., ICLR 2016

Distributed DL training by running Caffe in each worker

• Asynchronous parameter synchronization through master (driver) mode

• Very inefficient (~20 seconds with just 5 workers)

AAAI 2019

Analytics Zoo
A unified analytics + AI platform for distributed
TensorFlow, Keras and BigDL on Apache Spark

https://github.com/intel-analytics/analytics-zoo

https://github.com/intel-analytics/analytics-zoo

AAAI 2019

Analytics Zoo
Unified Analytics + AI Platform for Big Data

Reference Use Cases
• Anomaly detection, sentiment analysis, fraud detection, image

generation, chatbot, etc.

Built-In Deep Learning
Models

• Image classification, object detection, text classification, text matching,
recommendations, sequence-to-sequence, anomaly detection, etc.

Feature Engineering
Feature transformations for
• Image, text, 3D imaging, time series, speech, etc.

High-Level Pipeline APIs
• Distributed TensorFlow and Keras on Spark
• Native support for transfer learning, Spark DataFrame and ML Pipelines
• Model serving API for model serving/inference pipelines

Backbends Spark, TensorFlow, Keras, BigDL, OpenVINO, MKL-DNN, etc.

https://github.com/intel-analytics/analytics-zoo/ https://analytics-zoo.github.io/

Distributed TensorFlow, Keras and BigDL on Spark

https://github.com/intel-analytics/analytics-zoo/
https://analytics-zoo.github.io/

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

Distributed TensorFlow on Spark in Analytics Zoo

from zoo import init_nncontext

from zoo.pipeline.api.net import TFDataset

sc = init_nncontext()

#Each record in the train_rdd consists of a list of NumPy ndrrays

train_rdd = sc.parallelize(file_list)

.map(lambda x: read_image_and_label(x))

.map(lambda image_label: decode_to_ndarrays(image_label))

#TFDataset represents a distributed set of elements,

#in which each element contains one or more TensorFlow Tensor objects.

dataset = TFDataset.from_rdd(train_rdd,

names=["features", "labels"],

shapes=[[28, 28, 1], [1]],

types=[tf.float32, tf.int32],

batch_size=BATCH_SIZE)

1. Data wrangling and analysis using PySpark

AAAI 2019

Distributed TensorFlow on Spark in Analytics Zoo

import tensorflow as tf

slim = tf.contrib.slim

images, labels = dataset.tensors

labels = tf.squeeze(labels)

with slim.arg_scope(lenet.lenet_arg_scope()):

logits, end_points = lenet.lenet(images, num_classes=10, is_training=True)

loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits,

labels=labels))

2. Deep learning model development using TensorFlow

AAAI 2019

Distributed TensorFlow on Spark in Analytics Zoo

from zoo.pipeline.api.net import TFOptimizer

from bigdl.optim.optimizer import MaxIteration, Adam, MaxEpoch, TrainSummary

optimizer = TFOptimizer.from_loss(loss, Adam(1e-3))

optimizer.set_train_summary(TrainSummary("/tmp/az_lenet", "lenet"))

optimizer.optimize(end_trigger=MaxEpoch(5))

3. Distributed training on Spark and BigDL

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

Keras, Autograd &Transfer Learning APIs

from zoo.pipeline.api.net import *

full_model = Net.load_caffe(def_path, model_path)

Remove layers after pool5

model = full_model.new_graph(outputs=["pool5"])

freeze layers from input to res4f inclusive

model.freeze_up_to(["res4f"])

append a few layers

image = Input(name="input", shape=(3, 224, 224))

resnet = model.to_keras()(image)

resnet50 = Flatten()(resnet)

1. Use transfer learning APIs to
• Load an existing Caffe model
• Remove last few layers
• Freeze first few layers
• Append a few layers

Build Siamese Network Using Transfer Learning

AAAI 2019

Keras, Autograd &Transfer Learning APIs

Build Siamese Network Using Transfer Learning

import zoo.pipeline.api.autograd as A

from zoo.pipeline.api.keras.layers import *

from zoo.pipeline.api.keras.models import *

input = Input(shape=[2, 3, 226, 226])

features = TimeDistributed(layer=resnet50)(input)

f1 = features.index_select(1, 0) #image1

f2 = features.index_select(1, 1) #image2

diff = A.abs(f1 - f2)

fc = Dense(1)(diff)

output = Activation("sigmoid")(fc)

model = Model(input, output)

2. Use Keras-style and autograd APIs to build the Siamese Network

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

1. Initialize NNContext and load images into DataFrames using NNImageReader

from zoo.common.nncontext import *

from zoo.pipeline.nnframes import *

sc = init_nncontext()

imageDF = NNImageReader.readImages(image_path, sc)

2. Process loaded data using DataFrame transformations

getName = udf(lambda row: ...)

df = imageDF.withColumn("name", getName(col("image")))

3. Processing image using built-in feature engineering operations

from zoo.feature.image import *

transformer = ChainedPreprocessing(

[RowToImageFeature(), ImageChannelNormalize(123.0, 117.0, 104.0),

ImageMatToTensor(), ImageFeatureToTensor()])

nnframes
Native DL support in Spark DataFrames and ML Pipelines

AAAI 2019

nnframes

4. Define model using Keras-style API

Native DL support in Spark DataFrames and ML Pipelines

from zoo.pipeline.api.keras.layers import *

from zoo.pipeline.api.keras.models import *

model = Sequential()

.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(1, 28, 28))) \

.add(MaxPooling2D(pool_size=(2, 2))) \

.add(Flatten()).add(Dense(10, activation='softmax')))

5. Train model using Spark ML Pipelines

Estimater = NNEstimater(model, CrossEntropyCriterion(), transformer) \

.setLearningRate(0.003).setBatchSize(40).setMaxEpoch(1) \

.setFeaturesCol("image").setCachingSample(False)

nnModel = estimater.fit(df)

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

Working with Image

from zoo.common.nncontext import *

from zoo.feature.image import *

spark = init_nncontext()

local_image_set = ImageSet.read(image_path)

distributed_image_set = ImageSet.read(image_path, spark, 2)

1. Read images into local or distributed ImageSet

2. Image augmentations using built-in ImageProcessing operations

transformer = ChainedPreprocessing([ImageBytesToMat(),

ImageColorJitter(),

ImageExpand(max_expand_ratio=2.0),

ImageResize(300, 300, -1),

ImageHFlip()])

new_local_image_set = transformer(local_image_set)

new_distributed_image_set = transformer(distributed_image_set)

Image Augmentations Using Built-in Image Transformations (w/ OpenCV on Spark)

AAAI 2019

Working with Text

from zoo.common.nncontext import *

from zoo.feature.text import *

spark = init_nncontext()

local_text_set = TextSet.read(text_path)

distributed_text_set = TextSet.read(text_path, spark, 2)

1. Read text into local or distributed TextSet

2. Build text transformation pipeline using built-in operations

transformedTextSet = textSet.tokenize() \

.normalize() \

.word2idx() \

.shapeSequence(len) \

.generateSample() \

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

POJO Model Serving API

import com.intel.analytics.zoo.pipeline.inference.AbstractInferenceModel;

public class TextClassification extends AbstractInferenceModel {

public RankerInferenceModel(int concurrentNum) {

super(concurrentNum);

}

...

}

public class ServingExample {

public static void main(String[] args) throws IOException {

TextClassification model = new TextClassification();

model.load(modelPath, weightPath);

texts = …

List<JTensor> inputs = preprocess(texts);

for (JTensor input : inputs) {

List<Float> result = model.predict(input.getData(), input.getShape());

...

}

}

AAAI 2019

OpenVINO Support for Model Serving

from zoo.common.nncontext import init_nncontext

from zoo.feature.image import ImageSet

from zoo.pipeline.inference import InferenceModel

sc = init_nncontext("OpenVINO Object Detection Inference Example")

images = ImageSet.read(options.img_path, sc,

resize_height=600, resize_width=600).get_image().collect()

input_data = np.concatenate([image.reshape((1, 1) + image.shape) for image in images], axis=0)

model = InferenceModel()

model.load_tf(options.model_path, backend="openvino", model_type=options.model_type)

predictions = model.predict(input_data)

Print the detection result of the first image.

print(predictions[0])

Transparently support OpenVINO in model serving,
which deliver a significant boost for inference speed

AAAI 2019

Model Serving & Inference

HDFS/S3

Kafka

Flume

Kinesis

Twitter

Spout

Analytics
Zoo

Model

Spout

Bolt

Bolt

Bolt

Bolt

Bolt

Analytics
Zoo

Model

Seamless integration in Web Services, Storm, Flink, Kafka, etc. (using POJO local Java APIs)

AAAI 2019

Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases

AAAI 2019

Built-in Deep Learning Models

• Object detection
• E.g., SSD, Faster-RCNN, etc.

• Image classification
• E.g., VGG, Inception, ResNet, MobileNet, etc.

• Text classification
• Text classifier (using CNN, LSTM, etc.)

• Recommendation
• E.g., Neural Collaborative Filtering, Wide and Deep Learning, etc.

• Anomaly detection
• Unsupervised time series anomaly detection using LSTM

• Sequence-to-sequence

AAAI 2019

Object Detection API

from zoo.common.nncontext import *

from zoo.models.image.objectdetection import *

spark = init_nncontext()

model = ObjectDetector.load_model(model_path)

1. Load pretrained model in Detection Model Zoo

2. Off-the-shell inference using the loaded model

image_set = ImageSet.read(img_path, spark)

output = model.predict_image_set(image_set)

Off-the-shell Inference Using Analytics Zoo Object Detection API

3. Visualize the results using utility methods

config = model.get_config()

visualizer = Visualizer(config.label_map(), encoding="jpg")

visualized = visualizer(output).get_image(to_chw=False).collect()

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/examples/objectdetection

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/examples/objectdetection

AAAI 2019

Sequence-to-Sequence API

encoder decoder

Sequence to sequence model

bridge

encoder = RNNEncoder.initialize(rnn_type, nlayers, hidden_size, embedding)

encoder = RNNDecoder.initialize(rnn_type, nlayers, hidden_size, embedding)

seq2seq = Seq2seq(encoder, decoder)

AAAI 2019

Reference Use Cases

• Anomaly Detection
• Using LSTM network to detect anomalies in time series data

• Fraud Detection
• Using feed-forward neural network to detect frauds in credit card transaction data

• Recommendation
• Use Analytics Zoo Recommendation API (i.e., Neural Collaborative Filtering, Wide and Deep Learning) for

recommendations on data with explicit feedback.

• Sentiment Analysis
• Sentiment analysis using neural network models (e.g. CNN, LSTM, GRU, Bi-LSTM)

• Variational Autoencoder (VAE)
• Use VAE to generate faces and digital numbers

• Web services
• Use Analytics Zoo model serving APIs for model inference in web servers

https://github.com/intel-analytics/analytics-zoo/tree/master/apps

https://github.com/intel-analytics/analytics-zoo/tree/master/apps

AAAI 2019

Analytics Zoo Examples
Dogs vs. cats, object detections, Distributed TF

AAAI 2019

Dogs vs. Cats

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/dogs-vs-cats/transfer-learning.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/dogs-vs-cats/transfer-learning.ipynb

AAAI 2019

Object Detection API

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/object-detection/object-detection.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/object-detection/object-detection.ipynb

AAAI 2019

Image Classification & Fine-Tuning Using TFNet

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/tfnet/image_classification_inference.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/tfnet/image_classification_inference.ipynb

AAAI 2019

Distributed TensorFlow Training on Spark

https://github.com/intel-analytics/analytics-
zoo/blob/master/pyzoo/zoo/examples/tensorflow/distributed_training/train_lenet.py

https://github.com/intel-analytics/analytics-
zoo/blob/master/pyzoo/zoo/examples/tensorflow/distributed_training/train_mnist_keras.py

https://github.com/intel-analytics/analytics-zoo/blob/master/pyzoo/zoo/examples/tensorflow/distributed_training/train_lenet.py
https://github.com/intel-analytics/analytics-zoo/blob/master/pyzoo/zoo/examples/tensorflow/distributed_training/train_mnist_keras.py

AAAI 2019

Break

AAAI 2019

Distributed Training In BigDL
Data parallel training

Parameter synchronization

Scaling and Convergence

Task scheduling

“BigDL: A Distributed Deep Learning Framework for Big Data”
https://arxiv.org/abs/1804.05839

https://arxiv.org/abs/1804.05839

AAAI 2019

Apache Spark

Spark

Job

Driver

Spark Task

Worker

Spark Task

Spark Task

Spark Task

Worker

Spark Task

Spark Task

Single master (driver), multiple workers

AAAI 2019

Apache Spark

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Task

= Cached Partition= RDD

Source: “Parallel programming with
Spark”, Matei Zaharia, AMPCamp 3

Spark compute model

• Data parallel

• Functional, coarse-grained operators

• Immutable RDDs

• Applying the same operation (e.g., map,
filter, etc.) to all data items

AAAI 2019

Distributed Training in BigDL
Data Parallel, Synchronous Mini-Batch SGD

Prepare training data as an RDD of Samples

Construct an RDD of models (each being a replica of the original model)

for (i <- 1 to N) {

//”model forward-backward” job

for each task in the Spark job:

read the latest weights

get a random batch of data from local Sample partition

compute errors (forward on local model replica)

compute gradients (backward on local model replica)

//”parameter synchronization” job

aggregate (sum) all the gradients

update the weights per specified optimization method

}

AAAI 2019

Data Parallel Training

Worker 2 Worker nWorker 1

Partition 1 Partition 2 Partition n
Sample

RDD

Partition 1 Partition 2 Partition nModel

RDD

Task n: zip Sample and

model RDDs, and compute

gradient on co-located

Sample and model partitions

Task 2Task 1

“Model Forward-Backward” Job

AAAI 2019

Parameter Synchronization

Task n

1 2 n

1 2 n

1 2 n 1 2 n

1 2 n

Task 1 Task 2

local gradient local gradient local gradient

∑ ∑ ∑

gradient 1 gradient n

weight 1 weight 2 weight n

“Parameter Synchronization” Job

update update update

gradient 2

AAAI 2019

Parameter Synchronization

For each task n in the ”parameter synchronization” job {

shuffle the nth partition of all gradients to this task

aggregate (sum) the gradients

updates the nth partition of the weights

broadcast the nth partition of the updated weights

}

“Parameter Synchronization” Job
(managing nth partition of the parameters - similar to a parameter server)

“Parameter Server” style architecture (directly on top of primitives in Spark)

• Gradient aggregation: shuffle

• Weight sync: task-side broadcast

• In-memory persistence

AAAI 2019

Training Scalability

Throughput of ImageNet Inception v1 training (w/ BigDL 0.3.0 and dual-socket Intel Broadwell 2.1 GHz);
the throughput scales almost linear up to 128 nodes (and continue to scale reasonably up to 256 nodes).

Source: Scalable Deep Learning with BigDL on the Urika-XC Software Suite
(https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/)

https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/

AAAI 2019

Increased Mini-Batch Size

• Distributed synchronous mini-batch SGD
• Increased mini-batch size

total_batch_size = batch_size_per_worker * num_of_workers

• Can lead to loss in test accuracy

• State-of-art method for scaling mini-batch size*
• Linear scaling rule
• Warm-up strategy
• Layer-wise adaptive rate scaling
• Adding batch normalization

*Source: “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, Priya Goyal, et at. https://arxiv.org/abs/1706.02677
*Source: “ImageNet Training in Minutes”, Yang You, et at. https://arxiv.org/abs/1709.05011

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1709.05011

AAAI 2019

Training Convergence: Inception v1

Strategies
• Warm-up
• Linear scaling
• Gradient clipping
• TODO: adding batch normalization Source: Very large-scale distributed deep learning with BigDL,

Jason Dai and Ding Ding. O’Reilly AI Conference 2017

AAAI 2019

Training Convergence: SSD

Strategies
• Warm-up
• Linear scaling
• Gradient clipping

Source: Very large-scale distributed deep learning with BigDL,
Jason Dai and Ding Ding. O’Reilly AI Conference 2017

AAAI 2019

Difference vs. Classical PS Architecture

Classical PS architecture

• Multiple long-running, potentially
stateful tasks

• Interact with each other (in a blocking
fashion for synchronization)

• Require fine-grained data access and in-
place data mutation

• Not directly supported by existing big
data systems

BigDL implementations

• Run a series of short-lived Spark jobs
(e.g., two jobs per mini-batch)

• Each task in the job is stateless and
non-blocking

• Automatically adapt to the dynamic
resource changes (e.g., preemption,
failures, resource sharing, etc.)

• Built on top of existing primitives in
Spark (e.g., shuffle, broadcast, and in-
memory data persistence)

AAAI 2019

Task Scheduling Overheads

Spark overheads (task scheduling & task dispatch) as a
fraction of average compute time for Inception v1 training

BigDL implementations

• Run a single, multi-
threaded task on each
worker

• Achieve high scalability on
large clusters (e.g., up to
256 servers

Source: Accelerating Deep Learning Training with BigDL and Drizzle on Apache Spark, Shivaram Venkataraman, Ding Ding, and Sergey Ermolin.
(https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/)

https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/

AAAI 2019

Reducing Scheduling Overheads Using
Drizzle

Scaling to even larger (>500) workers

• Iterative model training

• Same operations run repeatedly

• Drizzle

• A low latency execution engine for Spark

• Group scheduling for multiple iterations
of computations at once

Source: Accelerating Deep Learning Training with BigDL and Drizzle on Apache Spark, Shivaram Venkataraman, Ding Ding, and Sergey Ermolin.
(https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/)

https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/

AAAI 2019

Advanced Analytics Zoo Applications
Text classification, movie recommendations, Q&A ranker

AAAI 2019

Text Classification

https://github.com/intel-analytics/analytics-
zoo/blob/master/pyzoo/zoo/examples/textclassification/text_classification.py

https://github.com/intel-analytics/analytics-zoo/blob/master/pyzoo/zoo/examples/textclassification/text_classification.py

AAAI 2019

Movie Recommendations

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/recommendation/ncf-explicit-
feedback.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/recommendation/ncf-explicit-feedback.ipynb

AAAI 2019

Real-World Applications
Object detection and image feature extraction at JD.com

Produce defect detection using distributed TF on Spark in Midea

NLP based customer service chatbot for Microsoft Azure

Image similarity based house recommendation for MLSlisting

Transfer learning based image classifications for World Bank

LSTM-Based time series anomaly detection for Baosight

Fraud detection for payment transactions for UnionPay

AAAI 2019

Object Detection and Image Feature Extraction at
JD.com

AAAI 2019

Applications

Large-scale image feature extraction

• Object detect (remove background, optional)

• Feature extraction

Application

• Similar image search

• Image Deduplication
• Competitive price monitoring

• IP (image copyright) protection system

Source: “Bringing deep learning into big data analytics using BigDL”, Xianyan Jia and Zhenhua Wang, Strata Data Conference Singapore 2017

AAAI 2019

Similar Image Search

Query
Search Result

Query

Search Result

Source: “Bringing deep learning into big data analytics using BigDL”, Xianyan Jia and Zhenhua Wang, Strata Data Conference Singapore 2017

AAAI 2019

Challenges of Productionizing Large-Scale
Deep Learning Solutions

Productionizing large-scale seep learning solutions is challenging
• Very complex and error-prone in managing large-scale distributed systems
• E.g., resource management and allocation, data partitioning, task balance, fault tolerance,

model deployment, etc.

• Low end-to-end performance in GPU solutions
• E.g., reading images out from HBase takes about half of the total time

• Very inefficient to develop the end-to-end processing pipeline
• E.g., image pre-processing on HBase can be very complex

AAAI 2019

Production Deployment with Analytics Zoo for
Spark and BigDL

http://mp.weixin.qq.com/s/xUCkzbHK4K06-v5qUsaNQQ
https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom

• Reuse existing Hadoop/Spark clusters for deep learning with no changes (image search, IP protection, etc.)

• Efficiently scale out on Spark with superior performance (3.83x speed-up vs. GPU severs) as benchmarked by JD

http://mp.weixin.qq.com/s/xUCkzbHK4K06-v5qUsaNQQ
https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom

AAAI 2019

Produce Defect Detection using Distributed TF on

Spark in Midea

https://software.intel.com/en-us/articles/industrial-inspection-platform-in-midea-and-kuka-
using-distributed-tensorflow-on-analytics

https://software.intel.com/en-us/articles/industrial-inspection-platform-in-midea-and-kuka-using-distributed-tensorflow-on-analytics

AAAI 2019

Produce Defect Detection using Distributed TF on

Spark in Midea

AAAI 2019

NLP Based Customer Service Chatbot for Microsoft

Azure

https://software.intel.com/en-us/articles/use-analytics-zoo-to-inject-ai-into-customer-service-
platforms-on-microsoft-azure-part-1

https://software.intel.com/en-us/articles/use-analytics-zoo-to-inject-ai-into-customer-service-platforms-on-microsoft-azure-part-1

AAAI 2019

Image Similarity Based House
Recommendation for MLSlistings

https://software.intel.com/en-us/articles/using-bigdl-to-build-image-similarity-based-house-recommendations

MLSlistings built image-similarity based house recommendations
using BigDL on Microsoft Azure

https://software.intel.com/en-us/articles/using-bigdl-to-build-image-similarity-based-house-recommendations

AAAI 2019

Image Similarity Based House
Recommendation for MLSlistings

RDD of house

photos

Is house exterior?
{0, 1}

House Style

{0, 1, 2, 3}

Image embedding 25088 floats

Image
 Processing

Is house exterior?
{0, 1}

House Style

{0, 1, 2, 3}

Image embedding 25088 floats

Image
 Processing

Is house exterior?
{0, 1}

House Style

{0, 1, 2, 3}

Image embedding 25088 floats

Image
 Processing Is house exterior?

{0, 1}

House Style

{0, 1, 2, 3}

Image embedding 25088 floats

Image
 Processing

Tags (is_exterior, style,

floors) of images

RDD of house

photos
Image features

Store image tags and

feature in table storage

Image pre-

processing

Image pre-

processing

Pre-trained VGG16 model (to extract

features)

Three pre-trained Inception v1 models (fine-

tuned as classifiers)

AAAI 2019

Image Similarity Based House
Recommendation for MLSlistings

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/image-
similarity/Image%20similarity.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/image-similarity/Image similarity.ipynb

AAAI 2019

Transfer Learning Based Image Classifications
for World Bank

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018

Classifying Real Food Images is not a Cat vs. Dog Problem

AAAI 2019

Project Layout

Phase 1:

• Image preprocessing (eliminate poor quality images and invalid images)

• Classify images (by food type) to validate existing labels

Phase 2:

• Identify texts in the image and make bounding box around them

• Text recognition (words/sentences in the image text)

• Determine whether text contains PII (personal identifiable information)

• Blur areas with PII text

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018

AAAI 2019

Code – Phase 1
Fine-tuning Training

Prediction and Evaluation

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018

AAAI 2019

Result – Phase 1

• Fine tune with Inception v1 on a full dataset

• Dataset: 994325 images, 69 categories

Nodes Cores Batch Size Epochs Training

Time (sec)

Throughput

(images/sec)

Accuracy

(%)

20 30 1200 12 61125 170 81.7

* This model training was performed using multinode cluster on AWS R4.8xlarge instance with 20 nodes

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018

AAAI 2019

Next Steps – Phase 2

• Image Quality Preprocessing

• Filter with print text only

• Rescaling, Binarisation, Noise Removal, Rotation / Deskewing (OpenCV,
Python, etc.)

• Detect text and bounding box circle text

• Recognize text

• Determine whether text contains PII (personal identifiable information)

• Recognize PII with leading words

• Blur areas with PII text

• Image tools

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang,
Spark Summit 2018

AAAI 2019

LSTM-Based Time Series Anomaly Detection
for Baosight

https://software.intel.com/en-us/articles/lstm-based-
time-series-anomaly-detection-using-analytics-zoo-
for-apache-spark-and-bigdl

https://software.intel.com/en-us/articles/lstm-based-time-series-anomaly-detection-using-analytics-zoo-for-apache-spark-and-bigdl

AAAI 2019

LSTM-Based Time Series Anomaly Detection
for Baosight

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/anomaly-detection/anomaly-detection-
nyc-taxi.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/fraud-detection/fraud-detection.ipynb

AAAI 2019

Fraud Detection for Payment Transactions
for UnionPay

Train one model

all features selected features
model
candidate model

sampled
partition

Training Data

…

normal

fraud

Train one model

Train one model

sampled
partition

sampled
partition

Post
Processing

Pre-
Processing

model

model

Spark Pipeline

Test Data

Predictions

Test

Spark DataFrameHive Table

Pre-processing

Feature
Engineering

Feature
Engineering

Feature
Selection

Model
Ensemble

S
p

a
rk

 P
ip

e
lin

e

Neural Network Model Using BigDL

Feature
Selection*

Model
Training

Model
Evaluation
& Fine Tune

https://mp.weixin.qq.com/s?__biz=MzI3NDAwNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f

https://mp.weixin.qq.com/s?__biz=MzI3NDAwNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f

AAAI 2019

Fraud Detection for Payment Transactions
for UnionPay

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/fraud-detection/fraud-detection.ipynb

Notebook:

https://github.com/intel-analytics/analytics-zoo/blob/master/apps/fraud-detection/fraud-detection.ipynb

AAAI 2019

Unified Analytics + AI Platform
Distributed TensorFlow, Keras and BigDL on Apache Spark

https://github.com/intel-analytics/analytics-zoo

https://github.com/intel-analytics/analytics-zoo

AAAI 2019

AAAI 2019

Legal Disclaimers
• Intel technologies’ features and benefits depend on system configuration and may require enabled

hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

• No computer system can be absolutely secure.

• Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon, Xeon phi, Lake Crest, etc. are trademarks of Intel Corporation in the U.S.
and/or other countries.
*Other names and brands may be claimed as the property of others.
© 2019 Intel Corporation

http://www.intel.com/performance

